Knowledge Discovery Workflows in the Exploration of Complex Astronomical Datasets

Raffaele D'Abrusco

Harvard-Smithsonian Center for Astrophysics

Galilean experimental method

Hunts Needle in a Haystack

Setting the stage

Knowledge Discovery - $K D$ - is the "automatic processing of large amount of data to extract patterns that can represent knowledge about the data".

How long does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

$K D$ in the real world

Outside our Real and Virtual Domes, KD methodology has already shaped how Data are processed and Knowledge is extracted, in several (expected and unexpected) fields:

- Social sciences: advertisement placement, social networks...
- Finance: market analysis tool, derivatives trading...
- Life science: genetics, epidemiology, drug testing....
- Security: face recognition, behavior tracking...
- Google and the like...

And for most of these fields, KD is the only possibility to make sense out of the overwhelming amount of data gathered.

The opportunity in Astronomy

The advancement of astronomical technology (hardware and software) allows to go larger, deeper and with higher resolution, both spatially and spectrally, changing the nature of astronomical data.

Facilities like LSST, SKA, ALMA, Euclid, etc... and the access and federation to archival data provided by the VO's will boost this change by making large multivariate datasets (spanning also the time axis) easily available.

Not just a needle in the haystack

A $K D$ workflow is a sequence of analysis steps accomplished through $K D$ techniques to extract the most knowledge out of (usually) large amount of (complex) data.

Goals:

- Discovery
- Find new complex correlations;
- Expand known correlations to more dimensions;
- Find new simple correlations, so far overlooked;
- Using the discovery
- Insight into astrophysics;
- Classification, regression, new ways to look at things...

[^0]
Not just a needle in the haystack

A $K D$ workflow is a sequence of analysis steps accomplished through $K D$ techniques to extract the most knowledge out of (usually) large amount of (complex) data.

Goals:

- Discovery
- Find new complex correlations;
- Expand known correlations to more dimensions;
- Find new simple correlations, so far overlooked;
- Using the discovery
- Insight into astrophysics;
- Classification, regression, new ways to look at things...

While high-dimensional regions of the observable parameters space are still completely unexplored, not all low-dimensionality feature spaces have been investigated yet, as in principle we look into places where they expect to find something. A systematic way to search for "something" is necessary as it does not depend on our biases/prioritization/limited availability of time and resources.

A first try

Extraction of optical candidate quasars

 from the SDSS photometric dataset using spectroscopic base of knowledge.A combination of two unsupervised clustering (UC) techniques and the use of a priori knowledge available for a subset of confirmed SDSS quasars was used to extract optical candidate quasars from photometric data.

The Weak Gated Expert

The Weak Gated Expert $(W G E)$ is a KD procedure for the determination of $z_{\text {phot }}$ for galaxies and quasars, based on clustering in the color space and the training of an ensemble of neural networks for regression.

- The UC algorithm split the feature space into more homogeneous chunks to prevent under or over-fitting of the experts;
- Multiple distinct experts (neural networks) are trained on different regions of the features space;
- The gate combines the outputs of the single experts in order to maximize the accuracy of the reconstruction and minimize biases.

A more general question

What if the goal is not the improvement of the accuracy of a quantity obtained by regression ($z_{\text {phot }}$) or binary classifications of sources (star vs quasars)?

What if the goal is to find out whether any pattern happens to occur in any feature space using clustering techniques?

The tenet
Spontaneous aggregations of sources in their observable space, the clusters, reflect similarities common traits shared by these sources. Anisotropies in the distribution of clusters populations relative to other observables reflect the existence of significant patterns.

The CLaSPS method

Clustering-Labels-Scores Patterns Spotter (CLaSPS)

(1) A UC algorithm is used to produce clusterings in the parameter space generated by any subset of the observables (the features);
(2) Other observables not employed for the clustering (the labels), are used as tags to identify interesting set of clusters using the score;

- The patterns in the selected set of clusters are selected and studied.

The choice of the clustering(s)

Set of clusters (or single clusters) are picked according to the degree of correlation between the distribution of cluster members in the feature space and their distribution in the labels space.

$$
S_{\text {tot }}=\frac{1}{N_{\text {clust }}} \cdot \sum_{i=1}^{N_{\text {clust }}} S_{i}=\frac{1}{N_{\text {clust }}} \sum_{i=1}^{N_{\text {clust }}}\left(\sum_{j=1}^{M^{(j)}-1}\left\|f_{i j}-f_{i(j+1)}\right\|\right)
$$

where $f_{i j}$ is the fraction of members of the i-th cluster with values of the label in the j-th class.

An interesting finding

CLaSPS has been applied on a sample of AGNs with multi-wavelength observations spanning from radio to γ-rays (features and labels) to characterize their SEDs in the colors feature space.

Dataset	\rightarrow	AGNs catalog
Features	\rightarrow	UV(Galex) + Optical(SDSS $)+$
		NIR(UKIDSS $)+$ IR $($ WISE $)$
Labels	\rightarrow	AGNs class., Blazars spectral class.
		γ-ray emission

Three clusters composed of Blazars stood out with large values of the scores spectral classification as label. Further experiments using as labels the γ-ray detection and
FSRQs-BL Lacs classifications showed that such patterns of Blazars depend on WISE mid-Infrared colors.

An interesting finding

CLaSPS has been applied on a sample of AGNs with multi-wavelength observations spanning from radio to γ-rays (features and labels) to characterize their SEDs in the colors feature space.

Dataset	\rightarrow	AGNs catalog
Features	\rightarrow	$\mathrm{UV}($ Galex $)+$ Optical(SDSS) +
		$\mathrm{NIR}($ UKIDSS $)+\mathrm{IR}(W I S E)$
Labels	\rightarrow	AGNs class., Blazars spectral class.
		γ-ray emission

Three clusters composed of Blazars stood out with large values of the scores spectral classification as label. Further experiments using as labels the γ-ray detection and FSRQs-BL Lacs classifications showed that such patterns of Blazars depend on WISE mid-Infrared colors.

The WISE Blazars strip

This pattern in the IR WISE color space of Blazars would have been apparent even in this low dimensional projection of the multi- λ feature space that we studied with CLaSPS, but it had been overlooked so far.

Another step in the workflow

The WISE Blazars locus can be used as a supervised classifier.

Discrete protoscore

$$
p s_{\mathrm{disc}}=1 / n_{\mathrm{extr}}
$$

where $n_{\text {extr }}$ is the number of extremal points inside the region (for each region of the locus).

Normalized continuos protoscore

$$
p s_{\mathrm{cont}}=\frac{1}{6^{n} \cdot p s_{\mathrm{disc}}^{n}}
$$

where n is an index used to tweak efficiency and completeness of the association process.

Final score

$$
s=p s_{\mathrm{cont}} \cdot w_{V}
$$

where $w_{V}=\left\|V_{\text {err.ellips. }}-V_{\text {reg }}\right\| / V_{\text {reg }}$ weights according to the volume of the error ellipsoid of the source.

Some more applications

- Mixing mid-IR and high-energy variability;
- Classification for Unassociated Fermi sources;
- Extraction of new WISE candidate blazars with validations using archival multi-wavelength data

More science with CLaSPS:
(1) The characterization of the globular clusters-LMXBs connection in different galaxies;
(e) Application to a sample of X-ray selected AGNs with wide-band multi- λ photometry, with already known correlations found by CLaSPS.

CLaSPS and Legacy COSMOS

Here comes the Super Chandra-COSMOS!

2.8 Ms exposure time on Chandra were just awarded (P.I. F. Civano) to observe $2 \mathrm{deg}^{2}$ containing the original Chandra-COSMOS field. Expected to detect 4500 X-ray sources to $F_{\text {lim }} \sim 2 \cdot 10^{-16} \mathrm{cgs}$ in $[0.5,2] \mathrm{keV}$ energy band.

- COSMOS multi-wavelength coverage is unparalleled: 47 wide and narrow bands spanning the whole spectrum.
- Perfect to characterize the SEDs of AGNs and constrain the dependence of SMBHs on their environment, as a function of the host galaxies properties.
- A treasure for astronomical data miners!

Improvements

Handling upper-limits and NaN's (regardless of their origins) becomes crucial with observationally rich complex samples.

(1) Observations or upper-limits in a band can be translated into a binary labels and used to characterize the clustering in the feature space...
(2) ...but still, discarding sources of the sample with not-measured features can drastically reduce the size and richness of the dataset.
(3) Significant comparison with results on similar datasets features-wise to check robustness, assess variance, etc.

Improvements

Handling upper-limits and NaN's (regardless of their origins) becomes crucial with observationally rich complex samples.
(1) Observations or upper-limits in a band can be translated into a binary labels and used to characterize the clustering in the feature space...
(2) ...but still, discarding sources of the sample with not-measured features can drastically reduce the size and richness of the dataset.
(3) Significant comparison with results on similar datasets features-wise to check robustness, assess variance, etc.

Feature-Distributed Clustering (FDC)

 methods can be used to address points 1 and 2 , while simulations and Object-Distributed Clustering (ODC) techniques are useful for point 3.

Stuff that helps

- The core CLaSPS functionalities ($K D$ algorithms, statistics and visualization) originally implemented in R
- The connective tissue of the workflow (retrieval of archival data, pre-processing, post-processing) is Python
- Specific data-related tasks are carried out by the passepartout for the realm of tables: STILTS.
- All experiments run on my laptop or desktop in my office (OK for small datasets).

Handy stuff that would help

What's missing?

- A high-level description of $K D$ workflows in astronomy (to compare and improve methods with different applications/use cases/domain);
- A repository for code, workflows and template datasets;
- A scalable platform for $K D$ workflows to tackle massive and complex datasets! (My computers won't cope with data anymore very soon...);
- Widespread adoption of versatile data access protocols (TAP interface, casJobs-like access points, etc.) from data centers
- Astronomers should learn SOL. SOL. SOL, machine learning, statistics,...

Handy stuff that would help

What's missing?

- A high-level description of $K D$ workflows in astronomy (to compare and improve methods with different applications/use cases/domain);
- A repository for code, workflows and template datasets;
- A scalable platform for $K D$ workflows to tackle massive and complex datasets! (My computers won't cope with data anymore very soon...);
- Widespread adoption of versatile data access protocols (TAP interface, casJobs-like access points, etc.) from data centers
- Astronomers should learn SQL, SQL, SQL, machine learning, statistics,...

The future

The future of astronomy will give me (us?) something to cheer about:

Astronomy is becoming a data-intensive discipline

- Exciting science ahead for the brave and lucky ones
- KD exnerts acquire transferable skills and exnertise valued outside the academia
- (Average) astronomers' awareness of KD usefulness (somewhat) growing
- KD know-how starting to percolate into the astronomical community

Interesting scientific results will boost $K D$ adoption!

The future

The future of astronomy will give me (us?) something to cheer about:

Astronomy is becoming a data-intensive discipline

- Exciting science ahead for the brave and lucky ones
- KD experts acquire transferable skills and expertise valued outside the academia
- (Average) astronomers' awareness of KD usefulness (somewhat) growing
- KD know-how starting to percolate into the astronomical community

Interesting scientific results will boost $K D$ adoption!

The future

The future of astronomy will give me (us?) something to cheer about:
Astronomy is becoming a data-intensive discipline

- Exciting science ahead for the brave and lucky ones
- KD experts acquire transferable skills and expertise valued outside the academia
- (Average) astronomers' awareness of KD usefulness (somewhat) growing
- KD know-how starting to percolate into the astronomical community

Interesting scientific results will boost $K D$ adoption!

Acknowledgements

- UC \& Classification/Regression \rightarrow [D'Abrusco, R. et al. 2009, MNRAS, 396, 223], [Laurino, O., D'Abrusco, R. et al. 2011, MNRAS, 418, 4]
- CLaSPS \rightarrow [D'Abrusco, R. et al. 2012, ApJ, 755, 2, 92]
- WISE Blazars \rightarrow [D'Abrusco, R. et al. 2012, ApJ, 748, 68D], [Massaro, F., D'Abrusco, R. et al. 2012, ApJ, 752, 61M]

Thank you!

[^0]: While high-dimensional regions of the observable parameters space are still completely unexplored, not all
 low-dimensionality feature spaces have been investigated yet, as in principle we look into places where they expect to
 find something. A systematic way to search for "something" is necessary as it does not depend on our
 biases/prioritization/limited availability of time and resources.

